REMARKS ON THE WAVE FRONT OF A DISTRIBUTION(1)

BY

AKIVA GABOR

ABSTRACT. Basic facts about composition and multiplication of distributions as given in [1] are proved using the formulas for the wave front set of the image and pullback of distributions.

1. Let X be a manifold, D'(X) the distributions on X. If a smooth density, dx, is given on X, then any smooth function on X, g, gives rise to a smooth distribution

$$\langle f, g \rangle = \int fg \, dx.$$

These smooth distributions can be pulled back along differentiable maps ϕ : $Y \rightarrow X$ (that is, $g \in D'(X)$ goes to $\phi * g \in D'(Y)$ by the usual pullback of functions). We would like to define a "continuous" extension of this and other notions, so as to include a wider subset of D'(X). This was done in [1, Chapter 2.5], and here we only give a unified treatment with some slight extensions.

According to [1] the question of when a distribution A can be pulled back is answered in terms of a set, $WF(A) \subset T^*(X)$, and a formula for $WF(\phi^*A)$ is obtained when ϕ^*A is defined. If $\phi: X \to Z$ is a differentiable map and A satisfies obvious conditions on its support relative to A then ϕ_*A can be defined as a distribution on Z. We derive a formula relating $WF(\phi_*A)$ to WF(A). The various theorems of [1] on multiplication and composition of distribution then follow from standard functional constructions.

Definition. If $A \in D'(X)$, $(x_0, k_0) \in T^*(X)$, $k_0 \neq 0$, then $(x_0, k_0) \notin WF(A)$ (wave front of A) if there exists a C^{∞} function ϕ with compact support, $\phi(x_0) \neq 0$, and an open cone $\Gamma \subset T^*_{x_0}(X)$ containing k_0 , such that for each $k \in \Gamma$ and some C^{∞} function ψ with $d\psi(x_0) = k$,

$$t^m |A(\phi e^{-it\psi})| \to 0 \quad (t \to \infty).$$

This definition is geometric (with no reference to local coordinates in X), and is

Received by the editors August 10, 1971.

AMS 1969 subject classifications. Primary 4640; Secondary 3520.

Key words and phrases. Distribution, wave front set.

⁽¹⁾ These results were obtained during participation in a joint seminar held by the mathematics department of the Weizmann Institute and the physics department of the University of Tel-Aviv. One of the topics of the seminar was [1]. I would like to thank Professors B. Kostant, B. Simon and S. Sternberg for helpful comments.

easily seen to be equivalent to the one given in [1] via Proposition 2.5.5 and the independence of coordinates given by Theorem 2.5.11' thereof.

In terms of local coordinates, let $U \subset X$, $x_0 \in U$, be identified with an open subset of $V = \mathbb{R}^n$. Then the tangent space at each point of U is identified with V, and the cotangent space with V^* , so that the cotangent bundle is $U \times V^*$. For a distribution u on X, with compact support in U, we have the Fourier transform, \hat{u} , given by

$$\hat{u}(k) = \langle e^{-i(k,x)}, u \rangle$$
 for $k \in V^*$.

With this notation, $(x_0, k_0) \notin WF(A)$ for A as above if there is $\phi \in C_0^{\infty}$, $\phi(x_0) \neq 0$, an open cone $\Gamma \subset V^*$ and a constant C_m for each m, such that

$$|\widehat{\phi A}(k)| \le C_m (1+|k|)^{-m}$$
 for all $k \in \Gamma$, $|k| \ge C$.

For distributions with support in U we define convergence as follows: If Γ is a closed cone in $T^*(U)$, define

$$D_{\Gamma}'(u) = \{A \in D'(U) \colon WF(A) \subset \Gamma\}.$$

A sequence $A_i \in D'_{\Gamma}(U)$ converges to $A \in D'_{\Gamma}(U)$ if

- (i) $A_i \rightarrow A$ in D'(U) (weakly),
- (ii) $|k|^m |\hat{A}_j(k) \hat{A}(k)| \to 0$, $|k| \to \infty$, uniformly for k in a closed cone disjoint of Γ .

For a general manifold X we define convergence in $D'_{\Gamma}(X)$ by partition of unity. A definition utilizing pseudodifferential operators can be found in [1] together with a proof that $C^{\infty}(X)$ is sequentially dense in $D'_{\Gamma}(X)$.

2. The following theorem is proved directly in [1, Theorem 2.5.11']:

Theorem 1. Let X, Y be manifolds, $\phi: Y \to X$ a C^{∞} map, and denote the set of normals of the map—

$$N_{+} = \{ (\phi(y), \xi) \in T^{*}(X) : \langle \eta, \xi \rangle = 0 \text{ for all } \eta \in \phi_{*}T_{v} \}.$$

If $A \in D'(X)$ and $WF(A) \cap N_{\phi} = \emptyset$, we can define the pullback $\phi*A$ in one and only one way so that it is equal to the composition $f \circ \phi$ when A = f smooth, and is sequentially continuous from $D'_{\Gamma}(X)$ to D'(Y) for any closed cone $\Gamma \subset T*(X) \setminus 0$ with $\Gamma \cap N_{\phi} = \emptyset$. Moreover,

$$WF(\phi^*A) \subset \phi^*WF(A) = \{(y, \phi_y^*(\xi)) : (\phi(y), \xi) \in WF(A)\}.$$

Let $\phi: X \to Y$ be a C^{∞} map, $A \in D'(X)$, and suppose that either

- (a) ϕ is proper $(\phi^{-1}(K))$ compact for any $K \subseteq Y$ compact) or
- (b) A has compact support.

Then ϕ_*A is well defined as a distribution on Y by the formula

$$\langle f, \phi_* A \rangle = \langle \phi^* f, A \rangle.$$

For any $S \subset T^*(X)$ we define $\phi_*S \subset T^*(Y)$ by

$$\phi_* S = \bigcup_x (\phi_x^*)^{-1} (S_x)$$
 where $S_x = S \cap T_x^* (X)$.

If S is compact, so is ϕ_*S .

Also, given a pair of mappings $\phi_1: X \to Y$, $\phi_2: Y \to {}^{n}Z$,

$$(\phi_2 \circ \phi_1)_*(S) = \phi_{1*}(\phi_{2*}S).$$

Theorem 2. $WF(\phi_{\star}A) \subset \phi_{\star}WF(A)$ for $A \in D(X)$ as above.

Proof. Every map can be factored as $\phi = \pi \circ \iota$, where $\iota: X \to X \times Y$ is $x \mapsto (x, \phi(x))$, and $\pi: X \times Y \to Y$ is projection onto the second factor. It therefore suffices to prove the theorem for the cases where $\phi = \iota$ is an imbedding and $\phi = \pi$ is projection as above.

In the case that $\iota: X \to Y$ is an imbedding, we can make the more refined assertion that

$$WF(\iota_{\cdot}A) = \iota_{\cdot}WF(A).$$

The WF is independent of coordinates, and is defined locally so we can apply a partition of unity and change of coordinates. Therefore, it suffices to prove this in the case where $X \subset \mathbb{R}^m$, $Y = X \times Z$, $Z \subset \mathbb{R}^n$, and ι defined by $\iota(x) = (x, 0)$. In this case, for any $S \subset T^*(X)$,

$$\iota_{\star}(S) = S \times T_0^*(Z), \qquad T^*(X \times Z) = T^*(X) \times T^*(Z), \qquad \iota_{\star}(A) = A \otimes \delta.$$

This gives immediately $WF(\iota_*A) = \iota_*WF(A)$ by the next (independent) theorem on the wave front of a tensor-product (for \subset) and direct observation (for \supset).

Now we examine the case $\phi = \pi \colon X \times Y \to Y$. Here $\phi_x^*(l) = (0, l)_{(x,y)}$ for any $l \in T_y^*$. Thus $l \in \phi_x(S)$ iff $\exists x$ with $(0, l)_{(x,y)} \in S$. Suppose that $l_0 \notin \phi_x(WF(A))$. Then for each x, $(0, l_0)_{(x,y)} \notin WF(A)$. By assumption the possible $(x, y) \in \phi^{-1}(y)$ form a compact set. Each (x, y) has a coordinate neighborhood and ψ such that $(e^{-i(l,y)}, \psi A)$ vanishes infinitely rapidly at infinity for all l in a conical neighborhood of l_0 . By compactness, a finite number of cones will do. By applying a partition of unity w.r. to x we are reduced to the case where A is of compact support, and the result follows from the definition.

Theorem 3. If $A \in D'(X)$, $B \in D'(Y)$ with $\Gamma_1 = WF(A) \subset T^*(X)$, $\Gamma_2 = WF(B) \subset T^*(Y)$, then

$$WF(A \otimes B) \subset \Gamma_1 \times \Gamma_2 \cup \Gamma_1 \times 0_v \cup 0_x \times \Gamma_2$$

(where $0_x = \{(x, 0)\} \subset T^*(X)$ the zero section).

The proof is direct from the definitions.

Note that these three operations (ϕ^* , ϕ_* and \otimes), as well as compositions of them, are sequentially continuous. This will be a useful tool in extending other operations in a sequentially continuous mode.

3.

Theorem [1, Theorem 2.5.10]. Let Γ_1 , Γ_2 be two closed cones in $T^*(X) \setminus 0$ satisfying $\Gamma_1 + \Gamma_2 \subset T^*(X) \setminus 0$ (where $\Gamma_1 + \Gamma_2 = \{(x, \xi_1 + \xi_2) : (x, \xi_j) \in \Gamma_j\}$). Then the product A_1A_2 of $A_i \in D_i'(X)$ can be defined (in a unique way) and

$$WF(A_1A_2) \subset \Gamma_1 + \Gamma_2 \cup \Gamma_1 \cup \Gamma_2.$$

Proof. For functions $f_1, f_2 \in D(X)$ the product is

$$f_1(x) \cdot f_2(x) = \Delta^*(f_1 \otimes f_2)$$

where $f_1 \otimes f_2$ is in $D(X \times X)$, $f_1 \otimes f_2(x, y) = f_1(x) f_2(y)$, and $\Delta: X \to X \times X$ is the diagonal map $\Delta: x \to (x, x)$ with $\Delta^* g(x) = g(x, x)$ for any $g(x, y) \in D(X, Y)$.

In view of our previous remark, a multiplication in D'(X) must also satisfy $A_1A_2 = \Delta^*(A_1 \otimes A_2)$ whenever it is defined.

The only restriction on the above construction is on applying Δ^* .

For any distribution $A \in D'(X \times X)$ and the diagonal map Δ the restriction is $WF(A) \cap N_{\Delta} = \emptyset$ where $N_{\Delta} = \{(x, x, \eta, -\eta) : \eta \in T^*(X)\}.$

In our case, $A_j \in D'_{\Gamma_i}(X)$, so

$$WF(A_1 \otimes A_2) \subset \Gamma_1 \times \Gamma_2 \cup \Gamma_1 \times O_x \cup O_x \times \Gamma_2$$

and $WF(A_1 \otimes A_2) \cap N_{\Delta} = \emptyset$ means exactly $\Gamma_1 + \Gamma_2 \subset T^*(X) \setminus 0$ as we required. So A_1A_2 is defined, and

$$WF(A_1A_2) \subset \Delta^*(\Gamma_1 \times \Gamma_2 \cup \Gamma_1 \times 0_x \cup 0_x \times \Gamma_2) = \Gamma_1 + \Gamma_2 \cup \Gamma_1 \cup \Gamma_2. \qquad Q.E.D.$$

Let $K \in D'(X, Y)$. It defines a continuous map $K: C_0^{\infty}(Y) \to D'(X)$ by

$$\langle \psi, K\phi \rangle = K(\psi \otimes \phi)$$
 for $\phi \in C_0^{\infty}(Y)$, $\psi \in C_0^{\infty}(X)$.

Theorem [1, Theorem 2.5.12]. For any $u \in C_0^{\infty}(Y)$, $WF(Ku) \subset \pi_*(WF(K))$ (where $\pi: X \times Y \to X$). $\pi_*WF(K)$ is also denoted $WF_{\kappa}(K) = \{(\kappa, \xi) : (\kappa, \xi, y, 0) \in WF(K) \text{ for some } y \in Y\}$.

Proof. u gives $1 \otimes u \in D'(X \times Y)$, which is smooth. Therefore the product $K(1 \otimes u)$ is defined and $Ku = \pi_* K(1 \otimes u)$.

$$WF(K(1 \otimes u)) \subset WF(K) + WF(1 \otimes u) \cup WF(K) \cup WF(1 \otimes u)$$

but $1 \otimes u$ is smooth, so $WF(K(1 \otimes u)) \subset WF(K)$ which gives $WF(Ku) \subset \pi_u WF(K)$.

Theorem [1, Theorem 2.5.14]. Let $K \in D'(X \times Y)$, and denote by

$$WF'(K) = \{(x, \xi, y, -\eta) \in T^*(X) \times T^*(Y) : (x, \xi, y, \eta) \in WF(K)\}$$

a relation mapping sets in $T^*(Y)\setminus 0$ to sets in $T^*(X)\setminus 0$. If $WF_x(K)=\emptyset$, $u\in D'(Y)$ and $WF(u)\cap WF_Y'(K)=\emptyset$ (where $WF_Y'(K)=\{(y,\eta):(x,0,y,-\eta)\in WF(K)\}$ for some $x\}$) then

$$WF(Ku) \subset WF'(K)WF(u)$$

for $Ku \in D'(X)$ defined by

$$\langle \phi, Ku \rangle = \langle \phi \otimes 1, K(1 \otimes u) \rangle, \quad \phi \in C_0^{\infty}(x).$$

Proof. If everything is defined,

$$Ku = \pi_{\star}(K(1 \otimes u)), \quad \pi: X \times Y \longrightarrow X.$$

Since $WF_{x}(K) = \emptyset$, $K(1 \otimes u)$ is defined and

$$WF(K(1 \otimes u)) \subset WF(K) + 0_{\star} \times WF(u) \cup WF(K) \cup 0_{\star} \times WF(u).$$

For any P, $Q \subset T^*(X)$, $\pi_*(P \cup Q) = \pi_*(P) \cup \pi_*(Q)$. By our assumption $\pi_*WF(K) = \emptyset$, and $\pi_*(0_x \times WF(u)) = \emptyset$ always, so $WF(Ku) \subset \pi_*(WF(K) + 0_x \times WF(u)) = WF'(K)WF(u)$. Q.E.D.

Let $K_1 \in D'(X \times Y)$, $K_2 \in D'(Y \times Z)$ be properly supported (that is, $\pi_* K_j$ are well defined for the projections π on the components). Denote $\Gamma_i = WF(K_i)$.

Theorem [1, Theorem 2.5.15]. If $\Gamma_1 \times 0_z + 0_x \times \Gamma_2 \subset T^*(X \times Y \times Z) \setminus 0$, then the composition $K = K_1 \circ K_2 \in D'(X \times Z)$ is well defined, and

$$WF'(K_1 \circ K_2) \subset WF'(K_1) \circ WF'(K_2) \cup (WF_x(K_1) \times 0_x) \cup (0_x \times WF'_z(K_2)).$$

Proof. For smooth distributions of the form

$$K_1 = f(x) \otimes g_1(y), \qquad K_2 = g_2(y) \otimes h(z),$$

the composition is defined as $f(x) \otimes h(z) \cdot \langle g_1, g_2 \rangle$. In other words,

$$(f \otimes g_1) \circ (g_2 \otimes \ h) = \pi_*((f \otimes g_1 \otimes 1) \ (1 \otimes g_2 \otimes \ h))$$

where $\pi: X \times Y \times Z \longrightarrow X \times Z$.

In the continuous extension of this definition, we define, where possible, $K_1 \circ K_2 = \pi_*((K_1 \otimes 1_z)(1_x \otimes K_2))$ for the above π .

The restriction on defining products limits us to the case $0 \notin \Gamma_1 \times 0_x + 0_x \times \Gamma_2$. This holding, we get

$$\begin{split} WF\left(K_1 \circ K_2\right) &\subset \pi_*(\Gamma_1 \times 0_z + 0_x \times \Gamma_2 \cup \Gamma_1 \times 0_z \cup 0_x \times \Gamma_2) \\ &= WF'(K_1) \circ WF\left(K_2\right) \cup (WF_*(K_1) \times 0_z) \cup (0_x \times WF_*(K_2)) \end{split}$$

or

$$WF'(K_1 \circ K_2) \subset WF'(K_1) \circ WF'(K_2) \cup (WF_x(K_1) \times 0_z) \cup (0_x \times WF'_z(K_2)). \qquad \text{Q.E.D.}$$

Note that $0 \notin \Gamma_1 \times 0_z + 0_x \times \Gamma_2$ holds in particular when $WF_Y'(K_1) \cap WF_Y(K_2) = \emptyset$, which is the restriction in [1], however composition exists in less restrictive circumstances.

REFERENCE

1. L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), 79-183.

DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL